Kinematic Optimization of a Redundantly Actuated Parallel Mechanism for Maximizing Stiffness and Workspace Using Taguchi Method
نویسندگان
چکیده
We present an optimization procedure that uses the Taguchi method to maximize the mean stiffness and workspace of a redundantly actuated parallel mechanism at the same time. The Taguchi method is used to separate the more influential and controllable variables from the less influential ones among kinematic parameters in workspace analysis and stiffness analysis. In the first stage of optimization, the number of experimental variables is reduced by the response analysis. Quasi-optimal kinematic parameter group is obtained in the second stage of optimization after the response analysis. As a validation of the suggested procedure, the kinematic parameters of a planar 2-DOF parallel manipulator are optimized, which optimization procedure is used to investigate the optimal kinematic parameter groups between the length of the link and the stiffness. DOI: 10.1115/1.4002268
منابع مشابه
Force/Motion/Stiffness Transmissibility Analyses of Redundantly Actuated and Overconstrained Parallel Manipulators
Drawing mainly on linear algebra and screw theory, this paper presents a general and systematic approach for force/motion/stiffness transmissibility analyses of redundantly actuated and overconstrained parallel manipulators. A set of normalized transmission indices is proposed for representing the closeness to singularities as well as for dimensional optimization of the redundantly actuated and...
متن کاملDesign and analysis of a redundantly actuated parallel mechanism for rapid machining
This paper describes the design, construction, and performance analysis of the Eclipse, a redundantly actuated six-degree-of-freedom parallel mechanism intended for rapid machining. The Eclipse is a compact mechanism capable of performing five-face machining in a single setup while retaining the advantages of high stiffness and high accuracy characteristic of parallel mechanisms. We compare num...
متن کاملDexterous Workspace Shape and Size Optimization of Tricept Parallel Manipulator
This work intends to deal with the optimal kinematic synthesis problem of Tricept parallel manipulator. Observing that cuboid workspaces are desirable for most machines, we use the concept of effective inscribed cuboid workspace, which reflects requirements on the workspace shape, volume and quality, simultaneously. The effectiveness of a workspace is characterized by the dexterity of the manip...
متن کاملKinematic Calibration for Redundantly Actuated Parallel Mechanisms
We present a new kinematic calibration algorithm for redundantly actuated parallel mechanisms, and illustrate the algorithm with a case study of a planar seven-element 2-degree-of-freedom (DOF) mechanism with three actuators. To calibrate a nonredundantly actuated parallel mechanism, one can find actual kinematic parameters by means of geometrical constraint of the mechanism’s kinematic structu...
متن کاملOptimization of the Kinematic Sensitivity and the Greatest Continuous Circle in the Constant-orientation Workspace of Planar Parallel Mechanisms
This paper presents the results of a comprehensive study on the efficiency of planar parallel mechanisms, considering their kinetostatic performance and also, their workspace. This aim is approached upon proceeding single- and multi-objective optimization procedures. Kinetostatic performances of ten different planar parallel mechanisms are analyzed by resorting to a recent index, kinematic sens...
متن کامل